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Abstract— In this paper, we report some models devel-
oped for analyzing Parachute/Balloon-assisted deployment
of sensor packages within the Mars Aerobot Validation Pro-
gram (MABVAP) at JPL. Two different scenarios are de-
scribed: pointing dynamics and control of an articulated
payload mounted on a superpressure balloon-supported gon-
dola, and the dynamics of various flight train configurations
with parachute and superpressure balloons in different ge-
ometries and oscillatory regimes originated upon deploy-
ment. These scenarios have been motivated by the need
to predict and validate flight-train stability behavior upon
deployment before and after tests have been made.
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INTRODUCTION

In the following, we document the analysis, and test-
ing done to assess the validity of models developed for
Parachute/Balloon-assisted deployment of sensor packages
within the Mars Aerobot Validation program at JPL. Two
main scenarios are described.

On the first scenario, we analyze the pointing dynam-
ics and control of an articulated payload mounted on a
balloon-supported gondola. An analysis has been made to
verify the feasibility of tracking an inertially fixed point
from a gimballed payload aboard a floating aerobot. The
equations of motion and control laws are described, as well
as numerical results obtained for different configurations
which cover a domain in a parameter space defined in terms
of wind gust profiles, tether lengths, balloon diameters, and
gondola/camera inertia properties. A parametric plot is
obtained that shows typical trends to be expected as a
function of those parameters.

On the second scenario, models and analytical simula-
tions are reported to predict and validate the dynamics
of various flight train configurations in different oscillatory
regimes originated upon deployment. Qualitative correla-
tions with experimental data are also reported. The ge-
ometric arrangements described by these models include:
a balloon tethered in wind tunnel, a balloon tethered to
a parachute in wind tunnel, a balloon tethered to a gon-
dola in free fall, a balloon tethered to a parachute and to
a gondola in free-fall, descent of a gondola under an inflat-
ing balloon still connected to a parachute. A model is also
proposed to capture the interaction of the airflow with the
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deformable surface of a partially inflated balloon. The in-
tent of these models is to determine the onset of dynamic
oscillatory instability (presumably attributed to von Kar-
man vortex shedding) of the balloon as a function of design
parameters such as: parachute diameters and riser length,
balloon diameter, balloon-gondola tether length, gondola
mass and inertia.

These scenarios have been motivated by the need to pre-
dict and validate flight-train stability behavior upon de-
ployment before and after tests have been made. Both
wind tunnel tests and drop tests have been conducted, at
NASA LaRC and Glenn, and at JPL, under the direction
of the third author. These tests are reported in detail in
another paper [3].

I. FIRST SCENARIO: PAYLOAD POINTING DYNAMICS
FROM BALLOON SUSPENDED GONDOLA

A. Analytical Models
A.1 Modeling Assumptions

The assumptions of the model are as follows:
o The reference frames of interest are the inertial frame (or
planet frame), and the gondola (or body-fixed) frame. The
gondola is taken here to be the preferential body, contrary
to common balloon dynamics usage which places the body
frame at the balloon, because sensors and actuators are
located on the gondola, rather than the balloon.
o The inertial coordinate frame N is denoted by the triad
A\ = (n1,n2,n3), and the gondola body frame G by Fl=
(b1, b2, bs).
e The translational dynamics is measured in N, while the
rotational dynamics of the gondola and all the other bodies
of the serial chain are measured in G.
¢ The camera P and the gondola G are modelled as rigid
bodjies.
¢ The tether connecting the gondola to the balloon is mod-
elled as a viscoelastic continuum, and discretized into N
lumped masses.
» The balloon, considered to be a fully inflated rigid sphere,
is modelled as a point mass, and constitutes point mass
number N + 1 of the tether.
e The attitude of the gondola G is stabilized by a set of
three reaction wheels, W1, W2, and W3, located at the
center of mass of G and whose spin axes are directed along
the principal axes of G.
« The camera P is connected to G through a universal joint
(U-joint), allowing two rotational degrees of freedom (6§ and
¢) for the relative motion of P with respect to G.
« The balloon is subject to gravity and to a constant flow
of air in the iz direction.



e The balloon may be connected to a gondola by a rigid
link representing a cable.

¢ The balloon is represented by a point mass or by a rigid
sphere. Partial inflation of the envelope is a very diffi-
cult thing to model, since it implies a deformable enve-
lope, so we assume the balloon is 100% full. However,
the gas inside the envelope is a partial mixture of the
percentage of Helium ay., and of the percentage of air
Gqir- Given the gas constants of He and air (Rye =
RO/py, = 2077.15J/(Kg°K) and Ruir = RO/pg, =
286.06J/(K¢°K ), where the molecular weights are pp, =
4.003 and p,,;, = 28.97 and R0 = 8314J/(K¢°K)), the
densities are given by the equations:

PHe = RFZ;ZTO 1
Pair = EI:%T_O (2)
the masses are given by:
Mpe ameV Pre (3)
Mair = (1—ane)Vogr )

where V is the volume of the balloon sphere, and the total
mass of gas inside the envelope is Mye + Meir- If Meny
is the mass of the material of the envelope, and Mgygeq is
the added mass of air caused by the fact that the balloon
moves in a fluid, we have that the total balloon mass is:

Mot = Mpe + Mair + Meny + Madded (5)
where
Mydded = 0.5p,;,.V (6)
The buoyancy vector is given by:
Buo = (pVg — (Mge + Mair)9)is (M)
and the effective lift vector is
Lift = (Buo — Menyg)is (8)
« The drag on the balloon is represented by
Dy = 1/20,5, VECDsSs (9)

with drag coefficient CD, = 0.4, balloon frontal area .S,
and the center of mass velocity is equal to:

Vo = /(6 — Ua)? + (3 — Uy)2 (10)
where U; is the (absolute) component of the airflow in the
i-th direction.

o There is no lift acting on the balloon. However, an un-
steady force acts on the balloon perpendicular to the di-
rection of the relative flow, and is caused by the vortex de-
tachment behind the balloon. As such, this force is called
the Strouhal force. It is given by:

Sy = 1/2p4; Vi2C Dy Spsin(2mut)

where D
vy
St = —
v
is the Strouhal number. For the balloon, it is assumed
to be equal to 0.2. The sinusoidal term is the simplest
representation of the unsteady behavior, which in a more

realistic model would contain higher harmonics.

A.2 Kinematics

o The translational dynamics of G is parameterized in
terms of the linear velocity components of its center of mass
G+ as

MO = (%,5,2) A, (11)
and the rotational dynamics as
N(.UG = (wl,wg,wg).ﬂ (12)

e The translational dynamics of each tether point P; is
parameterized in terms of the linear velocity components
of its center of mass as

NyPi = ()'(i,}"i,ii)]:\ (13)
o The rotational dynamics of each wheel Wi is parameter-
ized as

GwW; = Qiai (14)

where €); is the spin rate of the wheel with respect to the
gondola, and a; denotes the direction of the spin axis in J|
(here, a; = by).

¢ The translational dynamics of the camera P is param-
eterized in terms of the linear velocity components of its
center of mass P+ as

NyPt+ = NyG+ L NG 1+ NP xr (15)
and its rotational dynamics as
NP =Nw® 4 (¢s0, b, ) F| (16)
where s = sin and ¢ = cos.
o The wind velocity vector is represented as
Wyind = (Wx, Wy, W) R (17)

o Other points of interest for the kinematics are the camera
connection point Q and the tether connection point H1, for
which

NyQ _ NG+ NG [Ny Hi _ N G+ NGy g (1g)

o The accelerations of all these points are denoted by a,
whereas the angular acceleration of frames is denoted by
a.

A.3 System Equations of Motion

We adopt a projection method to derive the equations
of motion. This method has the advantage that it directly
leads to a set of equations which are easily coded in sym-
bolic form, and they are all written in terms of the veloc-
ities. The total number of bodies forming the gondola-
camera-wheels-tether-balloon system is nbod = 6 -+ Np,



where N, is the number of tether points. The total num-
ber of configuration degrees of freedom is ndof =7+ 2+
3 + 3 - N, + 3, where the attitude of the gondola is pa-
rameterized in terms of the quaternion vector. The total
number of motion degrees of freedom is ndof =6+2+3+
3 - Np + 3. We therefore identify the following generalized
velocities for the problem: #,7,2,wi,wa,ws, Ql,Qg,Qg,é,éS,
B1,01,21,22,02,22, -, ENUNEN TN +1,YN+1,2N+1.  Conse-
quently, the vector of generalized inertia forces, namely,
the vector of inertial, Coriolis, and centrifugal forces (i.e.,
the left hand side of the equations of motion) can be writ-
ten as follows (r denotes the equation number):

inertial
F”‘

Nw
(mg + ZmWi)NaG+ NyG+ 4

T

mpNaPt . NyP+ 4

Np

ZmiNai . Nv;‘, -+

wal" . (JpNaP —I—NLUG x JPNUJP) +
Nw

S Gl [N +NOW)
NwG XJi(NwG+GQWi)] +

Nw
NpC {(Jg + ZJi)NaG} +
Nw
N (Vwl x [Je + ) TN} +

Nw
N - D 13S0 + NS x 3,500}

from which the system inertia matrix and nonlinear terms
can be derived. In sequence, the first three lines represent
the contribution of the translational terms of the gondola,
camera, and tether points, respectively. The fourth, fifth,
and sixth lines represent the contribution of the rotational
terms of the camera, gondola, and reaction wheels, respec-
tively. The (r — th,s — th) entry of the inertia matrix is
given by:

Nw
M,s = (mg+ Zth)NVS+ : NVsG+ +
7

mpNvP+ NyP+ |

Np

E mNvi . Nv; +
i

NP JpNGF

Nw
S GV [H(NwS + QM) +

Nw Nw
Nol {(Ja+ ) _I)Nw +) 35}

where the indeces r and s run over the set of generalized
velocities, and where the indexed speed denotes a partial
velocity (NvE+ for instance, represents the partial deriva-
tive of YvC+ in the direction of the 7 — th generalized ve-
locity). The r — th component of the vector of gyroscopic
(i-e., Coriolis and centrifugal) terms is given by:

Nw
F;Lonlznear — (mG + ZmWi)Na’tG+ . NVSH_ +
7

mPNaf'l' : Nvf+ -+
Np
SEmeg ot
i
NP (IpNaf +Nw® x JpNwP) +
Nw
S G (T(Nal + O +
Nw@ x J;(Nw® + CaWH)] +
Nw
Nwlc.; AJe + ZJi)NatG +
i

Nw
NG x [(JG + ZJi)NwG] +
Nw L.
313G+ Nw® x J,C0h)

1

where the subscript (-); denotes the contribution of that
acceleration to the nonlinear terms (at least quadratic in
the velocities).

From the above information, we obtain the partial veloc-
ities NvG+ NyQ NyHL NyPt Nyi N, G Ny, Wi
, N Wz N, Wa o Ny P where r=1,...11+i+2, and
i = 1,..., Np.Also, we use the notation z; = I + hcbco,
2o = lo + hsbcp, z3 = lg + hsp, gt1 = —hslOcp, gta =
+h090¢7 gfl = —h093¢7 gf2 = —h89$¢7 g.f3 = +h‘c¢> and
h represents the distance from the center of the U-joint to
the center of mass of the camera.

The vector of generalized external forces can be written
in component form by bringing into evidence the velocities
of each point of force application and the angular velocity
of each frame of reference where a torque is applied. We
obtain:

Femternal
r

(Wg + Fgaero) ' NVS+ +

(Tl) . NV!I._Il +

(Wp) - NVF+ +

Np

> (Wit Fi,, +Ti=Tio1) - Vvp +
(WNP+1 -+ FNP+1aero) ) NVer+1
(Bb — TNp+1) Nypett

(1450, ~Tgch, 7o) F| - NP 4

Nw
S () - Sl +

+



[~Tw1 — Twa — TWB] ‘wac-; -

[(T¢$9, —T¢09, 7'9).7:[] . wa"

where Wy, W,,, and Wj for ¢ = 1, ..., N, are the weights,
Fg.... and F are the aerodynamic forces acting on the
center of mass (there should also be an aerodynamic mo-
ment, which we neglect in this analysis), T; is the tether
tension in the ¢ — th link, By, is the balloon buoyancy
force, Twj, for j = 1,2,3 are the reaction wheel command
torques, and 7g and 7, are the camera command torques
in the 8 and ¢ directions, respectively.

laero

B. Stochastic Wind Model

In order to generate wind data that is representative of
typical planetary winds that a balloon might encounter,
we developed a stochastic wind model based on first order
markov model. See Bryson and Ho for details [?, p.328-
335]. For this model, we assume that the varying winds
can be represented in the following form:

0(t) = —Bo(t) + oxw(t)

where w(t) is a zero-mean, unity variance, white noise pro-
cess with the following characteristics:

Ew()] = wt)=0
E[w®)? =1

(19)

(20)
(21)
The solution for Equation 19 involves the usual transition
matrix, ®(At):

(L, t + At) = D(At) = ¢ PA (22)

Consulting Bryson and Ho, we want to get our wind

model equation into the following form:
z(t) = F(t)z(t) + G(t)w(t) (23)

where w(t) is also a zero-mean, unity variance, white noise
process. Comparing with Equation 19, we see that:

z(t) = o(t) (24)
Fit) = -6 (25)
Gt) = oy (26)
The covariance of state z(t) is defined as X (¢):
X(t) = E [(a(t) - z(t))*] (27)

The evolution of the state covariance can now be expressed:
X(t) = FO)X(T) + X)F)" + GHQEHGE)  (28)

where Q(t) is the covariance of the white noise process.

Since this is a stationary process and the state is scalar,

the following simple differential equation results:
X(t)=—-26X(t) + 02

where Q(t) = ¢ = 1.
straightforward:

(29)

The solution to this equation is

X(t) = 2X (1 — e28%) (30)

[
iz

Since this is a stationary process, X (t) will approach some
final value as time increases and X (¢) will approach zero.
So as time increases:

o2

X(t)—+ ﬁ

Recalling the definition of X(t) = E [(z(t) —%(t))?] =
E [(v(t) — 9(t))?], the limiting value for X (t) is 02. There-
fore it is clear that:

as t— 00,

(31)

2
2 __ Oy
av - 2,8 (32)

from which we see that the necessary scaling for the white

noise process is:
on = /20 0y

B.1 Discrete approximations

(33)

Unfortunately, using the simple differential equation for
the wind noise model in most modern adaptive integrators
will produce significant computational “thrashing”. The
reason behind this is that the white noise process w(t) must
be approximated by calling a gaussian random number gen-
erator. This means the right hand side of the governing
differential equation (Equation 19) will not reproduce the
same value as t aproaches some specific time (¢x) in the
limit (because no two samplings of w(ty) will produce the
same number).

In order to deal with this difficulty, it is necessary to
convert the continuous differential equation in v(t) into a

discrete time step version®:

Tpt1 = @(At)xk + & (34)
where i, = z(tx) and tk41 = g + At, and &, is the contri-
bution of the white noise process over the interval:

tht1
€ = /t " B(tesr — oww(r)dt (35)

k

Unfortunately, we do not have access to a real white noise
process, w(k). We must approximate it with a zero mean,
unity variance, randomly generated, number wg. So the
question remains, how should this number be scaled over
the interval to approximate the effect of the true white
noise process, w(k), over the interval. Assuming only one
sampling of the wy, is available in the interval, it seems clear
that:

&, =+/E [67] ws

where the expected value of the square of £, over the in-
terval is:

(36)

E[¢] = / . ? (b1 — t)oZE [(w(t) —w(t))?] dt (37)

ty

1See the gyro model analysis for the Cassini spacecraft [?, Section
9.3, p.7-8] for a similar analysis.



Recalling that the white noise process is unity variance,
E [(w(t) — @(t))?] = 1. Converting the integrating variable
by letting 7 = tx41 — t, the integral becomes:

Bl = o [ @2 (3)
At
= o2 e 2PTdr
2 /0 d (39)
02 ¢ _ogAt
T [e=2#"], (40)
= o (e7284% 1) (41)
28

However, since At is small, a first order approximation for
the last term can be applied:

e8P0t _ 1~ —28AL (42)
Therefore:
2 o3
E[&] = - (2—3-) (—28At) (43)

Therefore, the exected contribution of the white noise pro-
cess over the interval At is:

&, =/ E[&1] = onVAL (45)
Finally, the discrete update equation needed is:
Tha1 = e Pz + o VAL wy (46)

Since At is small, the first order approximation e At ~
(1 — BAt), we have a simple Euler integration scheme:

Tht1 = Tk — Pt + /28At oy wy

where oy has been replaced by oy = /28 0.

Although this update equation can be used as part of a
user-defined fixed-step integration routine, perhaps a bet-
ter approach is to use this exact scheme to generate a set of
wind data having the desired characteristics. Then use that
synthetic wind data (with associated time information) to
construct a function W (t) that will do a table lookup in the
previously generated wind data, interpolate if desired, and
return the wind at the specified time. This function can
be used directly with adaptive integration routines because
the values are reproduceable for a specific t, and approach
the same value as t;, is approached from either side.

(47)

B.2 Extracting stochastic parameters from wind data

In order to construct simulated wind data that has sim-
ilar characteristics to actual wind data, it is necessary to
analyze actual data and extract two parameters, the stan-
dard deviation of the wind velocity (o), and the auto-
correlation time, T,,. The parameter § in the differential

equation governing the random wind speed model (Equa-
tion 19) is defined to be the reciprocal of the correlation
time: .

=7
The meaning of the correlation time is that the wind ve-
locity is not highly autocorrelated beyond much more than
the correlation time.

Assume that we have a set of N wind velocity samples,
v;, sampled at time intervals of At,. Getting the standard
deviation of the wind velocity requires a simple statistical
analysis:

(48)

N
1
2 _ 2
o= N1 ;zl (v; — D) (49)
where 7 is the mean of the wind velocity values.

Determining the autocorrelation time requires more
analysis. First, define the autocorrelation function f(k):

1 N-k
) = g S (0= D)ok —7)  (50)
N-Fk-1 4

This function correlates the data with a shifted version
of itself in a root-mean-square sense. If k = 0, f(k) should
reproduce the variance of the data. If £ =1, f(k) should
give the correlation of the data with the data shifted one
time step, At,. As k increases, the autocorrelation should
decrease exponentially. Apply the autocorrelation function
for various k to determine how large k has to get for the
values of f(k) to be small. Let K be the necessary value of
k for f(k) to be as small as desired. Now construct a set of
data pairs (tx, f(k)) from k = 0 through K where t; = kAtL.
Plotting the result will produce an autocorrelation plot.
Figure 77 shows an example autocorrelation plot of some
sampled data. To determine the autocorrelation time from
the autocorrelation data, it is necessary to fit the data to
an exponential function:

Ae~t/Tv (51)
The resulting estimate of T+, will be a good approximation
of the autocorrelation time and its reciprocal is the desired
0 necessary for the wind model.

C. Pointing Control Algorithms

The pointing control algorithms developed for this study
rely on a feedback linearization of the dynamics to derive
a globally, exponentially stable controller for the pointing
dynamics. The actuators considered are a set of three re-
action wheels, of sizes consistent with those used in scien-
tific ballooning experiments. The reaction wheels operate
about the nominal attitude of the gondola, and provide
three-axis stabilization of the reference body triad from
which the pointing payload (camera) operates. The pay-
load is hinged at a bottom location on the gondola, via
a universal-joint connetion, or a two degrees of freedom
gimbal. This implies that there are two independent axes
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Fig. 1. Pointing dynamics model for a payload mounted on a gondola
suspended from a balloon.

which need to be controlled to provide declination and az-
imuth of the payload, about the reference body triad rep-
resented by the gondola body axes. With the dynamics
described above (i.e., payload and gondola dynamics, reac-
tion wheel dynamics, and balloon and tether dynamics) the
equations of motion are stronly coupled through centrifugal
and Coriolis terms (gyroscopic forces). These forces are of
small magnitude if sufficiently slow maneuvers take place,
and providing the attitude of the gondola is only slightly
perturbed from an equilibrium inertial orientation. There-
fore, with standard sensing equipment located on board
the gondola, i.e. three-axis accelerometers, gyro unit, and
a global attitude determination system such as GPS or an
on-board star tracker, both inertial position (in planeto-
centric coordinates), inertial attitude (with respect to the
planetocentric reference frame, which is being propagated
through ephemeris in the on-board computer) and their
rates can be determined. Some estimation procedure is
necessary when the full dynamic state cannot be measured.
A previous paper by one of us has looked into the attitude
estimation of the gondola using only accelerometer data.

With this information, the nonlinear gyroscopic terms
can be cancelled from the equations. This results in a feed-
back linearized equation of motion in the direction of the
controlled axes, namely we achieve near perfect state de-
coupling, and we can design the local controllers assuming
independent control loops.

D. Simulations and Results

Next, we show some stmulation results.

These results identify which are the issues affecting gon-
dola stability, and which are the effects of wind changes
which affect pointing.

II. SECOND SCENARIO: FLIGHT TRAIN DYNAMIC
STABILITY MODELS OF BALLOON/PARACHUTE
SUSPENDED PAYLOAD

Next, we derive some numerical models used to investi-
gate the dynamics of several types of superpressure balloon

angular rats of gondola in Y direction
—— T T

——

angular rate [deg/s)

2 [ 0’.1 0‘.2 0'.3 0‘.4 05 0t7 OI.B 0‘.9 1
time [s]
Fig. 2. Gondola angular rate vs. time.

gondola instrument pointing error

pointing error [arcsec]

5 6
time [sec]

Fig. 3. Gondola instrument angular pointing error vs. time.

configurations: a balloon in wind tunnel, a balloon in free-
fall, a balloon connected to a parachute in wind tunnel, a
balloon connected to a parachute in free-fall, descent og a
gondola under an inflating balloon. These models are able
to determine the onset of dynamic instability (attributed
to von Karman vortex shedding) as a function of design
parameters such as: parachute diameter and riser length,
balloon diameter, tether length, gondola mass ad inertia.

I1I. CONCLUSIONS

In this paper, we have documented the analysis, and
testing done to assess the validity of models developed for
Parachute/Balloon-assisted deployment of sensor packages
within the Mars Aerobot Validation program at JPL. Two
different scenarios are described: pointing dynamics and
control of an articulated payload mounted on a balloon-
supported gondola; the dynamics of various flight train con-
figurations in different oscillatory regimes originated upon
deployment. These scenarios have been motivated by the
need to predict and validate flight-train stability behavior
upon deployment before and after tests have been made.
Details of these tests are also reported in this paper.

IV.
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Fig. 5. Models of parachute/balloon flight trains to study dynamic
instability during descent.

APPENDIX

A. The balloon in wind tunnel.

Following the nomenclature used in this paper, the equa-
tions of motion are given by:

m’aBt.t = FBt.¢ (52)
m°aBt.n = FBt.p (53)
Lip = MPBt.bg (54)

where aPt is the acceleration of B+ with respect to O,
FB+ and MPB+ are the force and moment vector acting on
body B, and t and n are the tangential and normal unit
vector to the line of length L.

Defining the following quantities:

A = s¢psl+ cochd (55)
B = s¢ch — cosh (56)
fo = r}AC/I, (57)
E = 1/(1+ MriB?/L) (58)

the tether tension is

T = E(ML@®)?+ M Aryd” +
(Dy + 8y)s0 + (D, + S, + Bb)ch)

Descent under inflating balloon

Assumptions:
- parachute is fully opened and steady
e modelled as point mass
descending at terminal velocity
en ripstitch modelled as chain of masses
PBondola modelled as point mass

- balloon inflation is being modelled and
relies on profile of mass flow rate vs. time.
Volume of balloon mass varies with time
until maximum inflation is reached.

Fig. 6. Assumptions of descent under inflating balloon.
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Fig. 7. Snapshots of parachute release when balloon becomes buoy-
ant.

and the equations of motion are

0 = F./(ML) (59)
¢ = torque/l, (60)

where
Fu = (Dy+8,)c8—(D.+8S.+Bb)s (61)
+Mired’ B+ My foT (62)
torque = —r,CT (63)

Taking the limit as r, — 0, we obtain the equations for the
point mass balloon. Figure 77 reports the tether tension
vs. time when the percentage of Helium inside the envelope
is 0.2. the wind speed is 3 m/s, the tether length is 3 m.
Similar tests done in a wind tunnel at NASA LaRC show
a response that closely matches the numerical results.

B. The balloon in free fall

When the balloon is in free fall, there are two additional
degrees of freedom: the horizontal and vertical coordinates
of the gondola. This point has been chosen as reference
since all the inertial sensing instrumentation is located on
the payload gondola. The situation is depicted in Figure
??. Defining m, as the gondola-payload mass, and

Ly = Dy+Sy
Ly = D,+8,+ Bb

(64)
(65)
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Fig. 8. Balloon buoyancy force during inflation process lasting 100
seconds.
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Fig. 9. Residual oscillation at gondola during inflation process lasting
100 seconds.

Fig. 10. Aerial Deployment and Inflation Concept. 1 - deployment
module, 2 - balloon container, 3 -inflation system, 4 - ripstitch

Fig. 11. Deployment and inflation of a 3 meter Mylar balloon.

the tether tension is

mriBC  m
— + JE——
I o

Lys0 + m(L(f + Arb<}>2 + gcb))

T = (1+ )" H(L3ch +

and the equations of motion are

MLl = Loch — L3s6 — (66)
. 2

m(—rpp B — Tb_IAZQI +gcf)  (67)

Iy¢ —ryCT (68)

mgii = TsbO (69)

mgz = Tc —mpg (70)

Figure 77 shows the behavior of the dynamic pressure, the
Strouhal force, the tether tension, and the oscillation angle
vs. time.

C. The balloon connected to the parachute in wind tunnel

When the parachute is connected to the balloon in the
wind tunnel, the situation is as depicted in Figure 77.
Here we model the parachute as a mass point. Therefore
there is no inertia and fluid added inertia. Defining 7,
as the parachute mass plus its added mass, Ly, the length
of tether between balloon and ground, L, the length of
tether between balloon and parachute, and

My, =
M; =

Dyy + Lyy
Dys 4 Lpz — mpg

(71)
(72)

the tension in the line connecting the balloon and the
parachute is given by:

= n2
(1 + T2 ) (Mys + Myed) +

T =

Br,

p (Lo + ALpgl”) + “2 (Lych — L3sh))

m



and the tension in the line connecting the ground to the
balloon is given by:

Ty = inLn@ + (Lyc — Lys6) + BT,

and the equations of motion are

MLyl = (Lach— L3s0) + BTy (73)
PpLoph = —m;:‘l (Lach — Lash) + (74)
(Macp — Masd) — pLogd B —  (75)
iy ABT, -

m

Figure 77 shows the behavior of the dynamic pressure, the
Struohal force, the tehter tension, and the oscillation angle
vs. time. The aerodynamic coefficients of the parachute
(cruciform type) are shown in Figures 7?7, 77, and 77.

D. The balloon connected to the parachute in free fall

When the parachute is connected to the balloon in the
free fall, the tether tensions are as follows:

2 —_
1 = Ha+ 22Ty 0, 4 4B (77
g
T, = Bu(0- 2220 (79
Mg
where
= 2
Ew - (1 + _77_7'_})__-8_)—1
— My
H, = (1+ mg)
Qy = LssH+ Lsych
Q = —m%B (Lych — L3s6) +

(Mas¢ + Mscd) +

.2 .9
T_np(Ange + Lpb¢ ) +
mpg(cd + Bsh))

The equations of motion then are:

mgy = Tyst (79)
mgz = Ticd—myg (80)
mlpgd = cB(Lo+Tosp) — (81)
s8(l3 + Thep) — mgsh (82)
and
MypLopp = (Mach — Mzsg) —

mf’A (L2ch — L3s) —
m

7y BLyg" +

Zepr — %ABTg +
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Fig. 12. Snapshots of dynamic simulation of the dynamics of a
Helium filled deformable balloon exposed to wind tunnel airflow
from below.

I. FLUID-STRUCTURE INTERACTION IN A DEFORMABLE
BALLOON

The two-dimensional deformable balloon inmersed in a
uniform airflow is shown in Figure ??. This model is used
to estimate the tension in the envelope membrane when
an airflow causes the balloon to deform. The airflow is
from below the envelope, and the balloon is hinged to the
ground at the bage point. The balloon envelope is modelled
by discretizing it in a series of point masses connected to
each other by elastic springs. Tension in the springs is zero
when the stretch is negative, i.e. the material of the balloon
envelope does not support any compressive load.

The equations of motion are given by:

ml; = Tich; — Tiqcliq + Fiy
mZ; = Tis0; —Ti1s8i_1 + Fiz
T, = FEAe;
& = (si—s0)/s0
si = V(yir — )% + (21 — 2i)°
Fyi = Fnisti + Fyich;
F,i = —Fnict;+ Fys0;
Fni = (gdi)ic- 1y
Fii (g:4:)ir - ti
G = 5ol — U+ (5= U.)P)

where i, is the unit vector along the relative flow.
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